Galaxy Cluster

information from Wikipedia

Clusters are larger than groups, although there is no sharp dividing line between a group and a cluster. When observed visually, clusters appear to be collections of galaxies held together by mutual gravitational attraction. However, their velocities are too large for them to remain gravitationally bound by their mutual attractions, implying the presence of either an additional invisible mass component, or an additional attractive force besides gravity. X-ray studies have revealed the presence of large amounts of intergalactic gas known as the intracluster medium. This gas is very hot, between 107K and 108K, and hence emits X-rays in the form of bremsstrahlung and atomic line emission. The total mass of the gas is greater than that of the galaxies by roughly a factor of two. However this is still not enough mass to keep the galaxies in the cluster. Since this gas is in approximate hydrostatic equilibrium with the overall cluster gravitational field, the total mass distribution can be determined. It turns out the total mass deduced from this measurement is approximately six times larger than the mass of the galaxies or the hot gas. The missing component is known as dark matter and its nature is unknown. In a typical cluster perhaps only 5% of the total mass is in the form of galaxies, maybe 10% in the form of hot X-ray emitting gas and the remainder is dark matter.

Clusters typically have the following properties.

They contain 50 to 1000 galaxies, hot X-ray emitting gas and large amounts of dark matter The distribution of these three components is approximately the same in the cluster. They have total masses of 1014 to 1015 solar masses. They typically have a diameter from 2 to 10 Mpc (see 1 E23 m for distance comparisons). The spread of velocities for the individual galaxies is about 800-1000 km/s. Notable galaxy clusters in the relatively nearby universe include the Virgo cluster, Hercules Cluster, and the Coma Cluster. A very large aggregation of galaxies known as the Great Attractor, dominated by the Norma cluster, is massive enough to affect the local expansion of the universe (Hubble flow).

Note: clusters of galaxies should not be confused with star clusters such as galactic clusters and open clusters, which are structures within galaxies, as well as globular clusters, which typically orbit galaxies.